ANALISI MATEMATICA 2

Docenti: 
Crediti: 
6
Sede: 
PARMA
Anno accademico di offerta: 
2019/2020
Responsabile della didattica: 
Settore scientifico disciplinare: 
ANALISI MATEMATICA (MAT/05)
Semestre dell'insegnamento: 
Secondo Semestre
Lingua di insegnamento: 

Italiano

Obiettivi formativi

Obiettivi formativi:

Conoscenze e capacità di comprendere:
Al termine del corso lo studente avrà consolidato le conoscenze di Analisi Matematica acquisite durante il primo anno del corso di laurea. Inoltre dovrebbe aver acquisito conoscenze e competenze relative al calcolo differenziale e integrale in più variabili, alla teoria delle equazioni differenziali e alle curve.

Capacità di applicare conoscenza e comprensione:
Attraverso gli esercizi svolti dal docente e le esercitazioni lo studente avrà imparato ad applicare le conoscenze teoriche acquisite alla risoluzione delle equazioni differenziali, all’analisi di curve nel piano e nello spazio, allo studio delle funzioni di due variabili reali e alla loro rappresentazione come superfici nello spazio, alla valutazione dei massimi e minimi di una funzione, al calcolo di un integrale doppio o di un volume.

Competenze:
Alla fine del percorso di studio lo studente avrà sviluppato la capacità di risolvere esercizi di vario tipo su tutti gli argomenti del corso e sarà in grado di comprendere i meccanismi matematici utilizzati negli altri corsi.

Autonomia di giudizio:
Al superamento dell’esame lo studente dovrebbe aver sviluppato la capacità di ragionamento necessaria per affrontare un nuovo problema e l’abilità di impostarne la soluzione, così come la precisione nell’organizzare il proprio lavoro e la capacità di verificare l’attendibilità dei risultati.

Capacità comunicative:
Lo studente sarà in grado di comunicare in modo abbastanza chiaro e preciso contenuti matematici relativi al programma svolto, anche al di fuori di un contesto esclusivamente applicativo.

Capacità di apprendimento:
Al superamento dell’esame lo studente dovrebbe aver maturato le conoscenze e competenze di base dell’Analisi Matematica per affrontare, in futuro, un approfondimento autonomo di eventuali applicazioni che possano rendersi necessarie all’interno di uno studio o di un progetto.

Prerequisiti

Propedeuticità obbligatorie: Analisi Matematica 1 e Geometria del primo anno.

Contenuti dell'insegnamento

Contenuti:
Modulo didattico 1:
CURVE NEL PIANO E NELLO SPAZIO

Modulo didattico 2:
FUNZIONI DI PIÙ VARIABILI REALI
CALCOLO DIFFERENZIALE
SUPERFICI E SOLIDI NELLO SPAZIO

Modulo didattico 3:
MASSIMI E MINIMI LIBERI E VINCOLATI

Modulo didattico 4:
INTEGRALI DOPPI E VOLUMI

Modulo didattico 5:
EQUAZIONI DIFFERENZIALI ORDINARIE

Programma esteso

Programma esteso

CURVE NEL PIANO E NELLO SPAZIO
Parametrizzazione di curve sia nel piano che nello spazio e rappresentazione di curve assegnate.
Vettore e versore tangente, vettori e versori normali, rette tangente e normale al sostegno di una curva data.
Velocità istantanea e velocità scalare.
Lunghezza di una curva.

FUNZIONI DI PIÙ VARIABILI REALI
Dominio. Rappresentazione di una funzione reale di due variabili reali e
suo grafico. Insiemi di livello e disegno del grafico. Rette e piani, cilindro, paraboloide, cono, superficie sferica, ellissoide, iperboloide.
Continuità, derivate parziali, gradiente, differenziabilità e piano tangente.
Cenni alle funzioni di tre variabili.

MASSIMI E MINIMI LIBERI E VINCOLATI
Massimi e minimi liberi e vincolati, matrice Hessiana.
Metodo dei moltiplicatori di Lagrange.

INTEGRALI DOPPI E VOLUMI
Definizione di integrale di una funzione di due variabili. Teorema di riduzione per il calcolo di un integrale doppio su un dominio rettangolare e su un dominio normale.
Significato geometrico dell’integrale doppio e calcolo di un volume.
Calcolo delle coordinate del baricentro di una figura geometrica piana.
Teorema di cambiamento di variabile; applicazioni: traslazioni, rotazioni e coordinate polari.

EQUAZIONI DIFFERENZIALI ORDINARIE
Concetto di equazione differenziale.
Equazioni differenziali lineari di primo e secondo ordine omogenee e complete a coefficienti costanti.
Problema di Cauchy.

Bibliografia

Testi consigliati:
A.Coscia, Appunti ed esercizi di Analisi Matematica 2, Libreria Santa Croce (Parma, 2018)
E.Acerbi, G.Buttazzo, Secondo corso di Analisi Matematica, Pitagora Editrice (Bologna, 2016)

Ulteriore materiale didattico:
(disponibile sulla PIATTAFORMA ELLY di Ingegneria Gestionale)
Esercizi con soluzione.
Compiti degli a.a. dal 2014-15 al 2018-19 con soluzione.

Metodi didattici

Metodi didattici:
Il corso si concentra sui concetti (forniti in modo preciso e rigoroso) e sugli aspetti applicativi e di calcolo. Il corso prevede settimanalmente quattro ore di lezione frontale alla lavagna più due ore di esercitazioni pratiche aggiuntive. È inoltre prevista un’attività di tutorato che comprende esercitazioni svolte dal docente, esercizi svolti in classe dagli studenti con il supporto del docente ed esercizi da svolgere a casa e discutere poi con il docente.

Modalità verifica apprendimento

La prova finale del corso consiste in una prova scritta pratica e successiva prova orale teorica e pratica su tutto il programma svolto. Le domande teoriche riguardano le definizioni e i teoremi. L’esame risulta superato con una votazione finale di 18/30.

La valutazione della preparazione tiene conto dei seguenti criteri:
(15%) Domande teoriche (conoscenza)
(85%) Applicazione della teoria – Esercizi (competenza)

In sostituzione dell’esame finale, lo studente potrà sostenere due prove scritte in itinere, con domande sia teoriche sia pratiche.

Altre informazioni

Questo corso (6CFU) è obbligatorio per il corso di laurea triennale in Ingegneria Gestionale.
È vivamente consigliata la frequenza al corso.